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The existence and stability of the positive periodic modes of a system, described by the scalar equation 

Xn = {~i-l-hXn-2;Xn - 1 - hxn -Xn-l-hXn-2>02 <- 0 

are investigated for n e N U {0} and different h = const > 0. © 2004 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

In [1] we considered a con t inuous  system with delay and relaxation, described by the scalar equation 

Yc(t) = f ( x ( t  +O~) . . . . .  x ( t  +Om) , x t )  (1.1) 

where 0 i a r e  specified non-positive constants, xt(O) := x ( t  + 0)(00 < 0 < 0), and the relaxation condition 

x ( t ) = O ~ x ( t  ÷) = l, l = const>O (1.2) 

The sufficient conditions were obtained such that this system has exactly one periodic solution (apart 
from arbitrary shifts along the t axis), to which any non-negative solution of the same problem (1.1), 
(1.2) tends as t ~ ~o. A similar result was obtained in [2] for m = ~o, 00 . . . .  

The purpose of this paper is to investigate the simplest discrete system with relaxation, described by 
the scalar equation 

x ,  = x n _ l - h x ~ _ 2 ;  n e  N : = N u { 0 } ,  h = const>0 (1.3) 

We will assume the specified initial quantitiesx_z andx_l, and all the quantitiesxn(n ~ N) to be positive 
(this requirement will not be specifically stated henceforth). The relaxation condition will be taken as 
follows: if, in a successive calculation of x0, Xl . . . .  using formula (1.3), we first obtainxnl < 0, then, instead 
of this, we assume Xnl = 1, and when n > n I we construct a solution of Eq. (3) using Xnl _ 1 obtained 
and xnl = 1 as the initial values, up to the next value x~2 _ 0, instead of which we assume x~2 = 1, etc. 
In other words, Eq. (1.3) with the relaxation condition can be written as 

{~n for Xn- l - hxn-2  > 0 
Xn- l - h x n -  2 = for xn_ l - hxn_ 2 < 0 '  n E ~l 

We similarly determine the solution of Eq. (1.3) with the relaxation condition for n _ no, and also 
for n e Z. We will call the problem of constructing a solution of Eq. (1.3) with the relaxation condition 
Problem R. 
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2. P E R I O D I C  S O L U T I O N S  OF S M A L L  P E R I O D  

Periodic solutions {xn} of Problem R will be considered for n ~ 2~. These solutions can be classified in 
accordance with the length N of their least period. For periodic solutions we always have maxn{x n} = 1, 
and hence, without loss of generality, we can assume that xl -- 1. The sequence {xl, . . . ,  XN} will be 
called a cycle  of the periodic solution considered. It is obvious that each cycle consists of a certain number 
p >_ 1 o f  f r a g m e n t s ,  following one another, each of which is a decreasing sequence, beginning with 1. 

When seeking the form of the cycles of given length, the following simple theorem is useful. 

T h e o r e m  1. For N > 1 all the fragments of a cycle have a length greater than 1. For N > 4 at least 
one fragment has a length greater than 2. 

P r o o f .  Suppose N > 1 and, to be specific, the fragment of  the cycle has a length 1, i.e. x 2 ---- 1. We 
will put 

k : = m i n { n e  {1 . . . . .  N } ' x ~ < l }  

We have 1 - hx N _< 0, x k = 1 - h. But it follows from the equalityxk = 1 - h that h < 1, which contradicts 
the inequality 1 - hx N _< 0. 

Suppose now that N > 4 and all the fragments of the cycle have a length 2. Then N is an even number, 
and we have 

1 - h x 2 i _  2 = X2i  (2.1) 

x2i - h <- 0 (2.2) 

(Here  and henceforth in this section i = 1 . . . . .  N / 2 ;  Xo = XN). By virtue of its cyclical character it follows 
from the system of equalities (2.1) that 

( N / 2 ) -  1 

X2i 2 (-h)J + (-h)N/2 = x2i 
j = o  

Hence we see that if the number  N / 2  is odd, all the numbers x2i are equal, and hence the least period 
is 2, and not N. We obtain the same contradiction if the number  N / 2  is even and h ~ 1. Finally, if the 
number  N/2 is even and h = 1, it follows f rom the equalityx2i -2 + x2i = 1 that all the numbersx4i are 
equal, like all the numbers x4i + 2, and hence the least period is 4 and not N. 

We will present the form of the cycles for the small values of N. 

T h e  c a s e  N = 1. The cycle has the form {1}. A periodic solution with N = 1 is possible if and only 
if h_> 1. 

T h e  case  N = 2. The cycle has the form {1, a}, where a ~ (0, 1). The relations a = 1 - h a ,  a - h < 0 

are obvious. Representing the line and the region corresponding to these relations in the a, h plane, 
we obtain the necessary and sufficient condition for periodic solutions to exist with N = 2 : h _> #5/4 - 
1/2 = 0.618, and the cycle has the form 

{1, 1/(1 +h )}  

It is obvious that when h ___ 1 periodic solutions are possible both with N = 1 and with N = 2. 

T h e  c a s e  N = 3. By virtue of Theorem 1, here a cycle has the form { 1, a, b}. In this case the relations 
a = 1 - h b  > O, b = a - h > O, b - h a  < 0 must be satisfied. Eliminating b from them we arrive at the 
relations a = 1 - h a  - h 2, 0 < a < 1, a - h > O, a - h - a h  < O. Representing the corresponding line and 
regions in the a, h plane, we obtain that a periodic solution with N = 3 is possible if and only if 
h I _< h < 1, where hi = 0.453 is the only real root of the equation h 3 + 2h - 1 = 0. In this case the cycle 
has the form 

{1,(1 +h2)/(1 + h ) , ( 1  - h ) / ( 1  +h)}  

Hence, when 5@~ - 1/2 < h < 1 periodic solutions are possible both with N = 2 and N = 3. 
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The c a s e N  = 4. Here ,  by vir tue of  T h e o r e m  1, the  cycle can have the fo rm {1, a, b, c} (1 > a > b > 
c > 0) or  {1, a,  1, b} (1 > a > b > 0). We can conclude,  similar to the previous  case, that  a cycle of  
the  first fo rm is possible if and  only if h2 < h < 1/2, where  h2 = 0.373 is the only posit ive roo t  of  the 
equa t ion  h 4 - h 2 + 3h - 1 = 0. In  this case the cycle has the fo rm 

{1, (1 + h2)/(1 + h - h 2 ) ,  (1 - h + h 3 ) / ( 1  + h - h 2 ) ,  (1 - 2h)/(1 + h - h Z ) }  

W h e n  hi  < h < 1/2 per iodic  solutions are possible bo th  with N = 3 and when  N = 4 (of  the  first form).  
For  cycles of  the second form, it follows f rom the p r o o f  of  T h e o r e m  1 tha t  h = 1, and the  cycle has 

the fo rm {1, a,  1, 1 - a} with any a ~ (1/2, 1). Hence ,  when  h = 1 per iodic  solutions are possible with 
N = 1, N =  2 a n d N  = 4. 

The case N = 5. It  follows f rom T h e o r e m  I that  the cycle can have the fo rm {1, a, b, c, d} (1 > a > 
b > c > d >0 )  or  {1, a, 1, b, c} (1 > a > 0, 1 > b > c > 0). We conclude,  as in the previous  case, that  
a cycle of  the first f o rm is possible if and only if h3 < h < 3/2 - 5 ~ 4  --- 0.382, where  h3 = 0.331 is the 
only posit ive roo t  of  the equa t ion  h 5 - 3h 2 + 4h - 1 = 0. In this case the cycle has the fo rm 

{ 1, ( 1 + h 2 - ha)l( 1 + h - 2h2), ( 1 - h + ha)l( 1 + h - 2h2), 

( 1 - 2h + h4)/( 1 + h - 2h2), ( 1 - 3h + hZ)/( 1 + h - 2h z) } 

Hence ,  when  h 2 _< h < 3/2 - ~ per iodic  solutions are possible bo th  with N = 4 (of  the first fo rm)  and 
with N = 5 (also of  the first form).  

For  cycles of  the second form,  af ter  e l iminat ing c and b, we obtain  the relat ions 

a ( 1 - h  2) = 1 - h + h  2, a < h ,  a h < l - h ,  a ( h - h 2 ) > _ l - 2 h  

One  can verify that  the first three  of  these lead to a contradiction. Hence,  there  are no per iodic  solutions 
with cycles of  the second form.  

The case N = 6. It  follows f rom T h e o r e m  1, that  the cycle can have the fo rm {1, a, b, c, d, e} 
(1 > a > b > c > d  > e > 0 ) , o r  {1, a, 1, b , c , d }  (1 > a > 0, 1 > b > c > d > 0 ) , o r  {1, a ,b ,  1, c , d }  
(1 > a > b > 0, 1 > c > d > 0). We can conclude,  as previously,  that  cycles of  the first fo rm are possible  
if and only if h 4 _< h < 1/3, where  h 4 = 0.307 is the least  of  the two posit ive roots  of  the  equa t ion  
h 5 + h 4 + h 3 + 2 h  2 - 4h + 1 = 0. In  this case the cycle has the  fo rm 

{1, (1 + h + 2 h 2 ) / ( 1  + 2 h - h 2 ) ,  (1 + h3)/(1 + 2 h - h 2 ) ,  

( 1 - h - h 2 - h3)/( 1 + 2h - h2), ( 1 - 2h - h 2 - h 3 - h4)/( 1 + 2h - h2), ( 1 - 3h)/( 1 + 2h - h2)} 

Hence ,  when  ha --- h < 1/3 per iodic  solutions are  possible  bo th  with N = 5 and with N = 6 (of  the first 
form).  

For  cycles of  the  second form, af ter  e l iminat ing d, c and b, we arrive at relations,  the first th ree  of  
which - a(1 - h 2 + h 3) = 1 - h + 2h 2, a <_ h, ah < 1 - h - contradict  one  another .  Hence ,  there  are no 
cycles of  the  second form. 

For  cycles of  the third form,  el iminating d, c and b, we arrive at the relat ions 

a ( 1 - h  2) = 1 - h + h 2 - h  3, a > h ,  a ( 1 - h ) < h ,  a h < l - h + h  2 

a ( h - h  2) > 1 - 2 h + h  2 - h  3 

It  follows f rom the second and fourth relat ions that  h ~ 1, and hence the first can be divided by 1 - h. 
Expressing a f rom the equali ty obta ined,  and f rom this, b, c and d also, we arrive at the expressions 

a = c = ( l + h 2 ) l ( l + h ) ,  b = d = ( 1 - h ) / ( l + h )  

Hence ,  the cycles consists of  two similar f ragments ,  which is impossible.  Thus  there  are  no cycles of  
the third form.  
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From the results obtained we can naturally state the hypothesis that when N __ 2 the values of h for 
which cycles of length N, consisting of a unique fragment, are possible, form the interval [aN, [~N), where 
0ON < ~N + 1 < 0ON- 1 < ~N (VN _> 3) and con ~ 1/4 when N ~ o~ (see Section 3). The following simple 
assertion may turn out to be useful when proving this: successive elements of the cycle {1, al, a2, . . . ,  
aN- 1} are proportional to the successive cofactors of the elements of the first row of the square matrix 
of order N, in which the second row has the form (-1, 1, N - 3 times zero, h), while each successive 
row is obtained from the previous one by cyclical permutation by putting the last element in the first 
position. For example, when N = 4 the last three rows of this matrix have the form 

(-1, 1, 0, h), (h,-1,  1,0), (0, h ,-1,  1) 

We do not know of any examples of cycles consisting of more than one fragment with N e 4. 

3. THE C O N D I T I O N  FOR T H E R E  TO BE NO P E R I O D I C  S O L U T I O N S .  

Theorem 2. When h ___ 1/4 Problem R has no periodic solutions. 

Proof. Suppose the condition of Theorem 2 is satisfied, but Problem R has periodic solutions with 
the cycle {x0 = 1, xl, . . . ,  XN-1}. Then, it follows from the results of Section 2 that N > 7. Suppose 
No := min {n e N : x, = 1}. Then, by virtue of Theorem 1, we have 2 _< No < N, where No ¢ N - 1. 

We will first assume that h < 1/4. Then from the formula xn = Clp~ + C2p'~ for the general solution 
of Eq. (1.3), where 

p~ = (1-)~)/2, P2 = (1+~) /2 ,  ~ = ~ / 1 - 4 h ~  (0,1) 

and C 1 and C 2 are  arbitrary constants, taking into account the initial conditions x0 = 1, x_l = XN-1 E 
(0, 1), we obtain 

n - 1  n 
x ,  = (hl~.)[(x_ 1 - p 2 1 ) p l  - (x_ 1 - p ~  )P2], n = -1, 0 . . . . .  N 0 -  1 (3.1) 

However, by the definition of N 0, the right-hand side of this expression when n = N O is non-positive. 
Hence, using simple reductions, we obtain the inequality 

( 1 + ~.)N°( 1 + )~ -- 2hx_ 1 ) < ( 1 - )~)N0( 1 -- ~. -- 2hx_ 1 ) (3.2) 

which is obviously untrue. 
If h = 1/4, formulae (3.1) and (3.2) are replaced by xn =X_x 2-n-1 + (2 -x_l)(n + 1)2 -n-1 and 

2(N0 + 1) < X_lNo respectively, which leads to the same result. 
As was noted in Section 2, it is possible that the condition h < 1/4 is not only sufficient hut also 

necessary for there to be no periodic solutions of problem R. 

4. THE S T A B I L I T Y  OF THE P E R I O D I C  S O L U T I O N S  

The following simple assertion will be useful later. 

Theorem 3. I fh  ___ 1, for periodic solutions of Problem R the least period N is equal to 1, 2 or 4. 

Proof. Suppose h _> 1 a n d N ~  {1, 2, 4}. It then follows the results to Section 2 t h a t N  > 6. If, in the 
corresponding cycle, some element, but not the last, is equal to 1, then, by virtue of Theorem 1, the 
next element is less than 1. If this element is not the last, the element following it is again equal to 1. 
Hence, the cycle consists of fragments of length 2, which is impossible in view of Theorem 1. 

We will introduce in standard form the idea of stability, asymptotic stability and instability of the 
solution of Problem R with initial data regarding their changes. We will say that a periodic solution of 
Problem R is stable (asymptotically stable), if it is stable (correspondingly asymptotically stable) when 
there is a change in the initial data when any value of n is chosen as the initial value. 

We will consider the stability of certain periodic solutions. 
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S u p p o s e  N = 1. It is then easy to verify that for h > 1, for any sufficiently small change in the initial 
data, the perturbed solution is identical with the unperturbed solution, which, therefore, is 
asymptotically stable. For h = 1 it is unstable; for example, when x_2 = 1, x_l = 1 - ~ (e e (0, 1)) we 
have 

X2n = 1, X4n+l -= e, X4n+3 = l - - e ,  V n e  

S u p p o s e  N = 2. Then when h > 1 and when h = 5 , ~  - 1/2 the periodic solution is unstable; when 
h = 1 it is non-asymptotically stable; when ~ -  1/2 < h < 1 it is asymptotically stable. Indeed, let 

h> 5 ~ - 1 / 2 ,  x_ 2 = I+E1,  x_ 1 = 1 / ( l + h ) + e  2 

(see Section 2, N = 2). Then, for sufficiently small [ E 1 ], [E21 we have 

x 0 = 1, x 1 = 1 / ( l + h ) - h e  2, x 2 = 1, x 3 = 1 / ( l + h ) + h 2 e 2  

etc., so long as (and if) it is not required to use the relaxation condition. The initial conditions 

x_ 2 = l / ( l + h ) + e l ,  x-i = l + e  2 

lead to a similar sequence, whence we immediately obtain the assertion presented above regarding 
stability for the values of h considered. If h = 5 - ~  - 1/2, then by choosing for the first form of the 
initial conditions values of ~1 and E2 as small in modulus as desired, we can make the quantityx0 positive 
and as small as desired, whence it follows that the periodic solution is unstable. 

The above discussion has a general form. Bearing Theorem 3 in mind, as well as the result obtained 
in Section 2 for N = 4, we obtain the following assertion. 

T h e o r e m  4. Suppose N _> 3, and the following condition is satisfied 

xn ~ h x n _  l, V n  = 1 . . . . .  N 

Then the periodic solution {xn} of Problem R is asymptotically stable. If this condition breaks down, 
this solution is unstable. In the special case when N = 4 and h = 1, the periodic solution is non- 
asymptotically stable. 

It follows from this theorem and from the stated in Section 2, in particular, when N e [3, 6], that for 
the interval h e [aN, [~N) where a periodic solution exists this periodic solution is asymptotically stable 
when h e (c~N, 13N) and unstable when h = C~N. 
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